Lean Product Development
A manager's guide

Lean Product Development (LPD) is the application of lean principles to product development, aiming to develop new or improved products that are successful in the market. It is a cross-functional activity that seeks to uncover product knowledge hidden within the end-to-end production cycle, typically in the hand-over points between functional units. LPD deals with the complete process of developing products, from generating ideas through to manufacturing and start-up. It is performed against a background of continuously assessing and reducing risk of market failure.

Lean Product Development: A manager’s guide explains what needs to be done in order to successfully complete the complex task of developing products. It describes how you set up and run each project according to its particular needs and shows how to plan your profitability, cut out waste, reduce development cycle time, and control risk. It also contains some practical tools and techniques that help to cut time and cost.

Colin Mynott

Dr Colin Mynott is a Chartered Engineer, a European Engineer, and a past Fellow of the Institute of Directors. He has extensive hands-on experience of manufacturing and developing products, from devising strategic plans through to manufacturing and start-up. He formed his present company in 1994 to disseminate best practice to industry on all aspects of product development, how it should be organised, its financial impact and management. He is joint author of a number of publications on product development, continuously researching best practice, and runs workshops, seminars and conferences on the subject.
Lean Product Development
Other volumes in this series:

Volume 15 Forecasting for technologists and engineers: a practical guide for better decisions B.C. Twiss
Volume 17 How to communicate in business D.J. Silk
Volume 18 Designing businesses: how to develop and lead a high technology company G. Young
Volume 19 Continuing professional development: a practical approach J. Lorrigan
Volume 20 Skills development for engineers: innovative model for advanced learning in the workplace K.L. Hoag
Volume 21 Developing effective engineering leadership R.E. Morrison and C.W. Ericsson
Volume 22 Intellectual property rights for engineers, 2nd edition V. Irish
Volume 23 Demystifying marketing: a guide to the fundamentals for engineers P. Forsyth
Volume 24 The art of successful business communication P. Forsyth
Volume 25 Effective team leadership for engineers P. Wellington
Volume 27 How to build successful business relationships F. Kay
Contents

<table>
<thead>
<tr>
<th>Preface</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the author</td>
</tr>
</tbody>
</table>

1 Introduction

- 1.1 What product development is all about
 - 1.1.1 The purpose of product development |
- 1.2 The discovery programme |
- 1.3 . . . and the discoveries . . . |
- 1.4 The origin of products |
- 1.5 Developing better products faster, at less cost
 - 1.5.1 The need for a management guide |
 - 1.5.2 The purpose of this book |
 - 1.5.3 You need an effective route map and effective tools |
 - 1.5.4 Who needs it? |
 - 1.5.5 So where do you want to be? |

2 Wealth creation in the economy

- 2.1 The origins of productivity performance |
- 2.2 How PDMs create economic growth |
- 2.3 Interdependency and what initiates growth |
- 2.4 Why not invest more in product development? |
- 2.5 What initiates economic activity: how do you feed it?
 - 2.5.1 How you feed the growth mechanism |
- 2.6 The financial effects of spending on Development rather than on Research |

3 Your company’s fortunes

- 3.1 Profit and product development |
- 3.2 Product development: the way to generate wealth |
- 3.3 The effect on sales and growth |
- 3.4 Just manufacturing is not enough |
- 3.5 Its strategic importance |
- 3.6 Product development sets your potential productivity |
- 3.7 What makes for effective product development |
- 3.8 Give customers what they value
 - 3.8.1 Generating fresh ideas |
Lean product development

3.9 Developing the product
3.9.1 How you develop your capability
3.9.2 Your strategy
3.9.3 Your tactics
3.9.4 Should you do research as well as development?
3.9.5 Protecting intellectual property

3.10 The structured process
3.11 How much should you spend?
3.11.1 Downsizing
3.11.2 Private equity ‘turnarounds’

3.12 Information management
3.13 Your objective is financial

4 The product development process
4.1 Introduction
4.2 Product development process interactions
4.2.1 The pitfalls
4.3 14 principles that minimise time and cost

5 Organising your company to increase profit
5.1 How you do it affects the cost of what you give your customer
5.2 Benchmarking
5.3 Improving your added value does not always add value
5.4 Most companies recycle tasks
5.5 Most companies batch the tasks, which queue
5.6 Relationship of manufacturing to product development
5.6.1 False investment justification
5.7 The lessons from the manufacturing area
5.8 The principles of flow activity
5.9 Organising to cut waste
5.10 Flow in product development
5.11 Being product-led
5.12 Changing to a team-based culture
5.12.1 What is culture?
5.12.2 Using teams
5.13 The remit of functions (departments) and teams
5.14 How teams work
5.15 Matching your team to the project
5.16 Setting up the development team for the project
5.16.1 Project champion and review group
5.16.2 Appoint a team leader
5.16.3 Developing project managers
5.16.4 Defining team responsibilities
5.16.5 The core team is appointed
5.16.6 Small core teams work best
5.16.7 Putting teams together
5.16.8 Purchasing and its control 60
5.16.9 Suppliers as team members 60
5.16.10 Customers 61
5.16.11 Training for the team 61
5.17 An example: what Malvern Instruments did 62

6 Product costing and company costs 65
6.1 What are the costs? 65
6.2 How do you calculate product cost? 66
6.3 The overheads of automation 67
6.4 Simplicity reduces the cost 68
6.5 How should you calculate manufacture cost? 69
 6.5.1 The problem with current accounting systems 69
 6.5.2 The important accounting aspects 69
6.6 How standard costing can lead to poor decisions 70
6.7 Costing as it could be
 6.7.1 Summary – costing the product-centred way 72

7 Product strategy 75
7.1 The products you make 75
 7.1.1 Devising a strategy 76
7.2 Stick to your knitting
 7.2.1 But continually increase your competencies 78
 7.2.2 Technology road mapping 79
 7.2.3 Your design and technology level and your strategy 79
 7.2.4 Should you give customers exactly what they want? 81
7.3 Doing nothing may be high risk
 7.3.1 Plan your route 83
7.4 Your ideas-generating mechanisms 83
 7.4.1 Finding viable ideas 83
7.5 Generating product ideas 84
 7.5.1 Internal company ideas 84
 7.5.2 Ideas from customers and agents 85
 7.5.3 Ideas from suppliers 85
 7.5.4 Personnel policy 85
 7.5.5 Licensing 85
 7.5.6 Systematic desk research 86
 7.5.7 Exhibitions 86
 7.5.8 Think tanks and ideas groups 86
 7.5.9 University research 86
 7.5.10 New production technology and methods 86
 7.5.11 Directories 86
7.6 Why do customers buy your product?
 7.6.1 Comparing yourself with competitors 87
 7.6.2 Perceived value 87
7.7 Interaction with manufacturing strategy 88
 7.7.1 How do the two interact? 88
 7.7.2 Should you move manufacture to low labour-cost areas? 89
 7.7.3 How can you cut your manufacture cost in the United Kingdom? 90
 7.7.4 Consider alternative manufacturing strategies 90
 7.7.5 Use product development to cut cost 90

7.8 Operational considerations 91
 7.8.1 Incremental development – your products’ age profile 91
 7.8.2 Is centralised development best? 92
 7.8.3 What you learn from others 92
 7.8.4 Effect of product strategy on sales growth 93
 7.8.5 Share your strategy with that of your key suppliers 93

7.9 Devise and communicate your product strategy down the organisation 94

7.10 The key factors for a successful process 95

7.11 Your company’s name 96

8 Planning your product programme 99
 8.1 Why it’s needed 99
 8.1.1 What you do 99
 8.2 How do you decide what to include in your programme? 100
 8.3 Setting out your product programme 100
 8.3.1 Define what you are offering the customer 100
 8.3.2 Define the logic of your product architecture 101
 8.3.3 Relate product architecture to timing 102
 8.3.4 Continually update your product plan 102
 8.3.5 Contingency planning 102
 8.3.6 So how many products should you have in your programme? 103
 8.3.7 Prioritise projects by their risk–reward profile 104
 8.4 Example: how TSS Limited continually update theirs 105
 8.5 Further detail 105

9 The seven key project phases 107
 9.1 Phase I: Pre-development 107
 9.1.1 Introduction 107
 9.1.2 Is there a potential project? 108
 9.1.3 The principles 108
 9.1.4 Your initial, fast personal screening 109
 9.1.5 Your second, more detailed, internal screening 110
 9.1.6 Is the product technically feasible? 110
 9.1.7 Potential income 111
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.8 Likely costs</td>
<td>111</td>
</tr>
<tr>
<td>9.1.9 Project timetable</td>
<td>112</td>
</tr>
<tr>
<td>9.1.10 The returns</td>
<td>112</td>
</tr>
<tr>
<td>9.1.11 Phase conclusion</td>
<td>113</td>
</tr>
<tr>
<td>9.2 Phase 2: Researching the project to make a quantified business case</td>
<td>113</td>
</tr>
<tr>
<td>9.2.1 Objectives and rationale</td>
<td>113</td>
</tr>
<tr>
<td>9.2.2 Staffing the project</td>
<td>114</td>
</tr>
<tr>
<td>9.2.3 The product</td>
<td>115</td>
</tr>
<tr>
<td>9.2.4 The product’s feasibility: a more thorough assessment</td>
<td>116</td>
</tr>
<tr>
<td>9.2.5 Why do customers buy your product?</td>
<td>117</td>
</tr>
<tr>
<td>9.2.6 The marketing specification</td>
<td>124</td>
</tr>
<tr>
<td>9.2.7 Example: how TSS (UK) Limited assesses project viability</td>
<td>127</td>
</tr>
<tr>
<td>9.2.8 The business plan</td>
<td>128</td>
</tr>
<tr>
<td>9.2.9 Phase conclusion</td>
<td>131</td>
</tr>
<tr>
<td>9.3 Phase 3: Generating concepts</td>
<td>132</td>
</tr>
<tr>
<td>9.3.1 Why bother to do this?</td>
<td>133</td>
</tr>
<tr>
<td>9.3.2 Who does it</td>
<td>135</td>
</tr>
<tr>
<td>9.3.3 Customer perception</td>
<td>136</td>
</tr>
<tr>
<td>9.3.4 The principles of the concept phases</td>
<td>137</td>
</tr>
<tr>
<td>9.3.5 How you generate ideas</td>
<td>139</td>
</tr>
<tr>
<td>9.3.6 Testing and costing concepts</td>
<td>141</td>
</tr>
<tr>
<td>9.3.7 The background development programme</td>
<td>144</td>
</tr>
<tr>
<td>9.3.8 Presenting and reviewing concepts</td>
<td>145</td>
</tr>
<tr>
<td>9.3.9 Summary</td>
<td>146</td>
</tr>
<tr>
<td>9.3.10 Protecting ideas</td>
<td>147</td>
</tr>
<tr>
<td>9.3.11 Phase conclusion</td>
<td>147</td>
</tr>
<tr>
<td>9.4 Phase 4: Optimising and trialling the concept</td>
<td>147</td>
</tr>
<tr>
<td>9.4.1 Developing the optimum concept</td>
<td>147</td>
</tr>
<tr>
<td>9.4.2 Concept design and proving</td>
<td>149</td>
</tr>
<tr>
<td>9.4.3 Achieving design robustness</td>
<td>153</td>
</tr>
<tr>
<td>9.4.4 Phase conclusion</td>
<td>154</td>
</tr>
<tr>
<td>9.4.5 The advantages of well-resourced concept work</td>
<td>154</td>
</tr>
<tr>
<td>9.4.6 Toyota ‘set-based’ development</td>
<td>154</td>
</tr>
<tr>
<td>9.5 Phase 5: The launch specification</td>
<td>157</td>
</tr>
<tr>
<td>9.5.1 Fixing the product launch specification</td>
<td>157</td>
</tr>
<tr>
<td>9.6 Phase 6: Detail design, plant installation and commissioning</td>
<td>159</td>
</tr>
<tr>
<td>9.6.1 The principal features of detailed design</td>
<td>159</td>
</tr>
<tr>
<td>9.6.2 The essentials are to make the product attractive</td>
<td>162</td>
</tr>
<tr>
<td>9.6.3 Simplicity of detail is vital but difficult</td>
<td>163</td>
</tr>
<tr>
<td>9.6.4 Safety aspects</td>
<td>165</td>
</tr>
<tr>
<td>9.6.5 The significance of suppliers’ contribution</td>
<td>166</td>
</tr>
</tbody>
</table>
x Lean product development

9.6.6 Manufacturing instructions 166
9.6.7 Final production engineering; plant acquisition and commissioning 167

9.7 Phase 7: Early production and confirmation trials 168
9.7.1 Confirming product performance 168
9.7.2 The transition between product development and production 169
9.7.3 Post-launch activities 170

10 Running and managing the programme 173
10.1 Introduction 173
10.2 Project management 173
10.3 The operating model 175
10.4 The programme – priority and targets 175
 10.4.1 Your company’s financial model 175
 10.4.2 Balancing priorities 176
10.5 Controlling the project by reviews 178
 10.5.1 Phase reviews 178
 10.5.2 Concurrent operation 178
10.6 How many reviews and phases? 180
10.7 Aspects of financial control 180
 10.7.1 Using IRR to assess project viability 181
 10.7.2 Computing the IRR 181
10.8 Conclusion: continuous development 182

Part a Programme control reviews 183
10a.1 The review meeting 183
 10a.1.1 Scrutinise at each review 183
10a.2 Review questions and transfer criteria 185
 10a.2.1 Transfer criteria 185

Part b Managing multiple projects 187
10b.1 Why multi-project management is important 187
 10b.1.1 Lower costs and speed are the drivers 188
10b.2 How it affects sales growth 188
10b.3 Multiple project organisation – department or matrix? 189
10b.4 The dangers of bottlenecks 191
10b.5 Component strategy and background development 191
10b.6 An operating example 191
10b.7 Implications for staffing 192
10b.8 Further detail 193

Part c Risk assessment 193
10c.1 Scope and application 193
 10c.1.1 Relationship between risk, project size and number of phases and reviews 193
 10c.1.2 Process 194
10c.2 Risk assessment 194
10c.3 Quantification 194
10c.3.1 Explanation of terms 196
10c.4 Computing programme risk 197
10c.4.1 Very low risk 197
10c.4.2 Low risk 198
10c.4.3 High risk 198
10c.4.4 Unacceptable risk 198
10c.5 Further information 198

11 Tools and techniques 199
11.1 Introduction 199
11.1.1 The tools and techniques that help you cut time and cost – what they enable you to do 199
11.1.2 Contents of the chapter 199
11.2 Quality function deployment 200
11.2.1 Origins 200
11.2.2 Introduction 200
11.2.3 The benefits 201
11.2.4 The process 201
11.3 Concurrent (simultaneous) engineering 202
11.4 Team working 204
11.4.1 Company culture 205
11.5 Incremental innovation 205
11.5.1 Radical innovation versus incremental 206
11.6 Brainstorming – generating ideas 206
11.7 Pugh concept selection 207
11.8 Functional cost analysis 208
11.9 Failure mode and effects analysis (FMEA) 208
11.10 Cause and effect analysis 209
11.11 Five whys 210
11.12 Pokayoke 210
11.13 Weibull analysis 211
11.14 Process capability 211
11.15 Statistical process control 211
11.15.1 Six Sigma 212
11.16 Taguchi methodology and robust design 212
11.16.1 Robust performance and designed experiments 213
11.17 Computer tools 214
11.17.1 Computer-aided drafting 215
11.17.2 Parametric CAD in the design process 216
11.17.3 ‘Knowledge-based’ systems (‘intelligent’ CAD) 216
11.17.4 Computer-aided engineering 217
11.17.5 Further advice 217
11.17.6 Manufacturing process simulation 218
11.17.7 Project control 218
11.18 ‘Design for X’ 219
11.18.1 Design for manufacture and assembly (DFMA) 219
11.19 Low-cost tooling and models 219
11.20 Rapid prototyping 220
11.20.1 Understand the processes involved 220
11.20.2 Troubles with rapid prototypes 220
11.21 Engineering data sources 221
11.22 Identifying process waste 221
11.22.1 What is the PD equivalent to the Toyota production process? 222
11.22.2 Design structure matrix analysis 222
11.22.3 Caveats 223

12 Bibliography 225

Index 229
Preface

A manager’s guide to organising, running and controlling the business process of developing products

Our job is to give the customer, on time and on cost, not what they want, but what they never dreamed they wanted; so that when they get it, they recognise it as something they had always wanted – Sir Denys Lasdun

This book is about how you manage the business process of developing products from strategy through design, to testing and service feedback. You can apply it to manufactured and service products, whether completely new or just a minor change.

It’s not an instruction manual on tools and techniques. These are explained in Chapter 11; Chapter 12 gives references on their detail.

The book is set out in the order of the tasks you need to tackle. The map (next page) enables easy reference once you’ve read it. The book can be folded flat open and stored in your A4 files.

‘*Lean*’ applied to development

There are few business problems that can not be fixed by introducing good new products – Carlos Ghosn, Renault/Nissan

The word ‘*Lean*’ was coined to mean Toyota Production System (TPS) methodology, developed to identify and eliminate manufacturing waste.

In Toyota, Ohno and Shingo defined the following seven principal manufacturing wastes. You can think of equivalents in developing products:

1. **Overproduction:** over-complex solutions from poor concepts; chopping up the task and letting each department duplicate what others are doing.
2. **Waiting:** for other departments to process tasks, for unnecessary high-level approval; queuing to use an overloaded facility or specialist staff time.
3. **Transporting:** moving bits of product development task to separate departments and then having to fetch them back, analyse and collate their input.
4. **Over-processing:** requiring too many approvals; preparing reports that aren’t used; creating features the customer doesn’t want.
5. **Inventory**: poorly organized projects that take too long to complete; working on projects that are not commercially viable.

6. **Wasted motion**: searching for information that has not been captured or logically pigeon-holed, often across departmental boundaries.

7. **Rework and defects**: changes to the product, or the way it is to be manufactured, from not considering potential problems early enough.

80% of business failures can be traced to the way in which products are developed. But it doesn’t depend just on the process manual; company culture is equally important. One doesn’t work without the other.

But that’s not the whole story; some product development (PD) wastes don’t have an exact equivalent.

The main problem is that while you can see manufacturing waste, most PD waste is invisible. It sits in hard drives and (overworked) engineers’ brains. The most common wastes are not developing what the customer wants and not offering a sufficiently appealing product. And most companies repeat costly mistakes and take far too long because of expensive rework loops.

Unfortunately, value stream mapping doesn’t reveal this until you’ve already wasted the time and cost. And removing waste from a lousy process won’t produce a good one. And it certainly won’t create Toyota’s learning-based approach or the culture of its development environment.

If Toyota’s success was the result only of replicable techniques and methods, many more companies would be as successful. But they’re not.

Toyota’s PD success is based on their continuous development of culture, knowledge and hardware. Their store of thoroughly developed background knowledge enables them to apply it rapidly to new products. This is discussed at the close of phase 4.

The book explains how you can avoid waste and revise your culture.

Success lies not only in the grand plan but principally in the detail. And only support from the CEO will generate and enforce the culture. It’s your culture that governs how you operate, not your procedure manual!
About the author

Dr Colin Mynott is a Chartered Engineer, a European Engineer, and a past Fellow of the Institute of Directors. A materials technologist by training, he graduated from the London Imperial College of Science and Technology and, for his doctorate, from Cambridge University in 1963.

He has extensive hands-on experience of manufacturing systems and of developing products, from devising strategy through to manufacturing engineering and start-up.

He worked in and managed manufacturing companies that developed their own products. His career started in the automotive industry in manufacturing systems’ engineering at the British Motor Corporation; he then became The Materials Engineer for Chrysler UK. Then followed a 5-year spell in international management consultancy. Following that, from 1976, he successively ran medium-sized manufacturing companies in the automotive sector. In a 3-year sabbatical from industry, in 1990 he was asked to organise the UK Design Council’s services to manufacturing industry as Industry Director, primarily to improve UK manufacturers’ product development capability.

As part of his manufacturing career, he started his own manufacturing firm with two partners in 1973, initially as non-executive chairman and, from 1987, as joint chief executive until its sale in 1989. It continues today as a market leader in its field.

He formed his present company in 1994 to disseminate best practice to industry on all aspects of product development, how it should be organised, its financial impact and management. He is joint author of a number of publications on product development and continuously researches best practice.

When requested, he organises and runs workshops, seminars and conferences on product development to show companies how, through their own efforts, they can improve their performance. And in national programmes with UK institutions, for example with the Royal Academy of Engineering in a UK-wide programme to improve the product development capability of UK manufacturers; and running workshops with the Institute of Mechanical Engineers.

He helps companies with their product development strategy and its operation; for example, with a leading Japanese car-maker in a 3-year programme to help improve the product development effectiveness of their European first-tier suppliers.

In-house workshops

When asked (his contact detail is pd@mynott.com), he works with and facilitates companies, at board and senior management level. The aim is to enable companies to develop products with greater customer appeal in the least time and cost by enhancing their product development culture and process. His in-house workshops have enabled a number of US and UK companies to revolutionise their product development performance and capability. This book sets out the basis; workshops put the culture and process firmly in place across the whole management team.
Progressively reducing the risk - in developing the product

1. Justify the idea
2. Confirm the viability
 - research marked viability and product feasibility
 - produce business plan
3. Develop concepts
 - to satisfy the marketing specification
 - using company-wide team input
 - model the processes
4. Optimise the concept
 - eliminate all unknowns
 - select the best concept
 - product and production methods
5. Detail the design
 - no specification changes allowed
6. Early production
 - confirm product performance
 - confirm production methods
7. Post new ideas to the Mk 2 programme

Background development of product building blocks
- continuous, separate programme
The 7 phases and reviews:

1. Initial screening: eliminate the obvious
 - Review 1

2. The business case
 - Review 2

3. Define and trial physical concepts
 - Review 3

4. Optimise the concept and trial it
 - Review 4

5. Fix the launch specification
 - Review 5

6. Detail the design
 - Review 6

7. Early production; confirm performance
 - Review 7

Ramp up to full production

Phase 1. Screen the potential project’s viability: the initiator passes it to a Board-level project champion; using internal company knowledge, they do a fast assessment of fit to company strategy, risk, apparent technical, market and financial viability; Board approves to proceed to Phase 2 or kill.

Review 1. Is the idea worth even considering?

Phase 2. Research customer requirements, technical feasibility and costs in detail: appoint the project manager (and first team members); the team does detail market research; estimates costs, potential financial return and risk; generate the marketing specification and the project business plan.

Review 2. Is there a quantifiable business case?

Phase 3. Expand the team (from all functions) to generate several concepts: evaluate technology, production and design feasibility of each against the marketing specification, their risk and cost. Generate models; trial and quantify unproven elements. Send potentially good but unproven building blocks and ideas to the long-term programme for future products.

Review 3. Are there enough feasible concepts?

Phase 4. Generate a better concept from the best features of each: evaluate how the features of each concept satisfy the marketing specification; combine the best features to produce a better concept; simulate and make test models; debug interface problems; trial performance; generate a draft launch specification and production engineering specification for the production process.

Review 4. Is there a suitable optimum concept?

Phase 5. Freeze and prepare the detail launch specification and production process specification.

Review 5. Is the launch specification correct?

Phase 6. Detail the design; install and commission the plant: issue production release drawings (instructions); install and commission the plant.

Review 6. Are the detail designs complete; is the plant commissioned?

Phase 7. Start-up and run the plant; trial early production: run early production off production tools; confirm performance and cost against the launch specification; use early products for approval and legislative tests; use the trials to rectify final concerns whether product or process. Check production supplies are organised.

Review 7. Are confirmation trials complete; is all ready for production?